Can our universe come from nothing? At least one prominent physicist, Lawrence Krauss, answers with a resounding “yes.” In fact, he wrote a book titled A Universe from Nothing to articulate his positionwhich emanates from his worldview that no creator is involved. Krauss wants science to define nothing (instead of agreeing with the definitions of philosophy and theology). One key component of Krauss’s “nothing” hinges on the sum energy budget for the universe being zero and that requires a universe with a flat geometry. It is difficult to picture this geometry because we can’t “see” the universe’s shape, but recent evidence may undermine that key feature and worldview.

A Little Background

For the last two decades, the prevailing cosmological model for the origin of the universe has posited an inflationary big bang picture. After an incredibly brief epoch of hyperfast expansion, known as inflation, the universe continually expands from an initial hot, dense state. As it expands, it cools and forms all the structure we see—stars, planets, galaxies, and clusters of galaxies, etc. Measurements indicate that the energy of the universe is distributed such that normal matter (electrons, protons, neutrons and the like) comprises about 5%, dark matter adds another 25%, and dark energy makes up the balance. When originally proposed, inflation provided a nice answer to a nagging question: Why did our universe have a geometry so close to flat?

The very process of inflation contained the answer. The exponential growth increased the universe’s size by at least a factor of 1026! This incredible expansion would take the original geometry of the universe (whether closed, flat, or open) and drive it exquisitely close to a flat geometry. This was a hallmark prediction of inflation. Regardless of the universe’s original geometry, inflation’s incredible expansion would result in a measurably flat geometry (at least with our current sensitivity).

Why Is a Flat Geometry Important?

On a basic level, the universe could assume three different geometries: closed, flat, or open—and it has nothing to do with the number of dimensions. The three diagrams below show how parallel lines behave within the different geometries.

blog__inline--is-the-universe-closed-1blog__inline--is-the-universe-closed-2blog__inline--is-the-universe-closed-3

 

In a closed geometry (left), parallel lines converge and eventually cross. In an open geometry (right) the lines grow farther and farther apart. In a flat geometry (center) the lines always stay the same distance apart. Although scientists cannot step outside the universe to see its geometry, they can measure various quantities like the “clumpiness” of the cosmic microwave background radiation (CMB), which is leftover radiation from an early stage of the universe. That distribution pattern can help reveal the geometry.

Given the nature of our universe (as described above), scientists have derived an interesting feature. If the universe is flat, calculations show that the total energy of the universe is zero!1

Krauss relies on this feature of the universe because he argues that the universe arises from a quantum fluctuation. Only if the universe has zero energy can this quantum fluctuation exist for anything more than the briefest length of time. Consequently, evidence that the universe has an open or closed geometry would undermine Krauss’s entire argument.

Is the Universe Actually Closed?

A recent article published in Nature Astronomy indicates that the universe may actually have a closed geometry.2 Analysis of the Planck Legacy data suggests that the universe exhibits more gravitational lensing than expectedIn gravitational lensing, gravity bends the path of light traveling through the expanding universe. Thus, a closed geometry for the universe is the simplest way to account for this variation. Furthermore, analysis of Planck satellite data tends to affirm a closed geometry. However, it’s not a closed case. When integrating the Planck analysis with baryon acoustic oscillations surveys of dark energy and gravitational shear studies, the best fits still point to a flat geometry. (On an interesting note, there are other discrepancies like this, such as the disparate measurements of the Hubble constant using the CMB and Type Ia supernovae.) Unfortunately, current technology and measurements cannot resolve whether the universe is actually closed or if scientists need more analysis.

We must wait for future space missions to provide more definitive data but we can think about the potential implications. The discovery of a closed universe would rule out the possibility of a zero-energy universe. The remaining options fit more comfortably within a theistic framework where the universe begins to exist. These results show that scientific advances can provide evidence to evaluate models for the origin of the universe and the worldviews that give rise to those models.

Check out more from Reasons to Believe @Reasons.org

Endnotes
  1. Marcelo Samula Berman, “On the Zero-Energy Universe,” International Journal of Theoretical Physics 48 (August 25, 2009): 327886, doi:10.1007/s10773-009-0125-8.
  2. Eleonora Di ValentinoAlessandro Melchiorri, and Joseph Silk, “Planck Evidence for a Closed Universe and a Possible Crisis in Cosmology,” Nature Astronomy 4 (November 4, 2019): 196–203, doi:10.1038/s41550-019-0906-9.

 

About The Author

Jeff Zweerink

Since my earliest memories, science and the Christian faith have featured prominently in my life - but I struggled when my scientific studies seemed to collide with my early biblical training. My first contact with RTB came when I heard Hugh Ross speak at Iowa State University. It was the first time I realized it was possible to do professional work incorporating both my love of science and my desire to serve God. I knew RTB's ministry was something I was called to be a part of. While many Christians and non-Christians see the two as in perpetual conflict, I find they integrate well. They operate by the same principles and are committed to discovering foundational truths. My passion at RTB is helping Christians see how powerful a tool science is to declare God's glory and helping scientists understand how the established scientific discoveries demonstrate the legitimacy and rationality of the Christian faith. While many Christians and non-Christians see the two as in perpetual conflict, I find they integrate well. • Biography • Resources • Upcoming Events • Promotional Items Jeff Zweerink thought he would follow in his father's footsteps as a chemistry professor until a high school teacher piqued his interest in physics. Jeff pursued a BS in physics and a PhD in astrophysics at Iowa State University (ISU), where he focused his study on gamma rays - messengers from distant black holes and neutron stars. Upon completing his education, Jeff taught at Loras College in Dubuque, Iowa. Postdoctoral research took him to the West Coast, to the University of California, Riverside, and eventually to a research faculty position at UCLA. He has conducted research using STACEE and VERITAS gamma-ray telescopes, and currently works on GAPS, a balloon experiment seeking to detect dark matter. A Christian from childhood, Jeff desired to understand how the worlds of science and Scripture integrate. He struggled when his scientific studies seemed to collide with his early biblical training. While an undergrad at ISU, Jeff heard Hugh Ross speak and learned of Reasons to Believe (RTB) and its ministry of reconciliation - tearing down the presumed barriers between science and faith and introducing people to their personal Creator. Jeff knew this was something he was called to be a part of. Today, as a research scholar at RTB, Jeff speaks at churches, youth groups, universities, and professional groups around the country, encouraging people to consider the truth of Scripture and how it connects with the evidence of science. His involvement with RTB grows from an enthusiasm for helping others bridge the perceived science-faith gap. He seeks to assist others in avoiding the difficulties he experienced. Jeff is author of Who's Afraid of the Multiverse? and coauthor of more than 30 journal articles, as well as numerous conference proceedings. He still serves part-time on the physics and astronomy research faculty at UCLA. He directs RTB's online learning programs, Reasons Institute and Reasons Academy, and also contributes to the ministry's podcasts and daily blog, Today's New Reason to Believe. When he isn’t participating in science-faith apologetics Jeff enjoys fishing, camping, and working on home improvement projects. An enthusiastic sports fan, he coaches his children's teams and challenges his RTB colleagues in fantasy football. He roots for the Kansas City Chiefs and for NASCAR's Ryan Newman and Jeff Gordon. Jeff and his wife, Lisa, live in Southern California with their five children.



Email Sign-up

Sign up for the TWR360 Newsletter

Access updates, news, Biblical teaching and inspirational messages from powerful Christian voices.

Thank you for signing up to receive updates from TWR360.

Required information missing

This site is protected by reCAPTCHA, and the Google Privacy Policy & Terms of Use apply.