One of my favorite planes is the SR-71 Blackbird—largely because of its extraordinary performance abilities. Even with a weight of around 100,000 pounds, the SR-71 blackbird achieves speeds in excess of Mach 3, with a top reported speed of near 2,200 mph. Additionally, this massive aircraft flies at altitudes above 80,000 feet, more than twice as high as the highest commercial flights. These speed and altitude capabilities allow the SR-71 Blackbird to simply outrun most surface-to-air missiles. No one questions the incredible design exhibited by the SR-71, yet when it sits on the runway ready for takeoff, it leaks fuel. Granted the fuel leaks were measured in drops per minute, but any fuel leakage on such a fantastic plane raises the question of who messed up? As it turns out, the fuel leak was a design feature crucial to the SR-71’s amazing flying capabilities. We see a similar scenario in Kinesin-1, an important biochemical molecule in the cell.

Kinesin-1: The Cell’s Cargo Mover
Kinesin-1 moves vesicles around cells by “walking” along rod-like protein assemblies called microtubules. Kinesin-1 uses adenosine triphosphate (ATP) as fuel to move around. However, when a team of researchers at Yamaguchi University in Japan measured the motion of Kinesis-1 along the microtubules, they found that up to 80% of the energy released from ATP generated heat instead of movement!

As a Christian, I find such results disturbing. Most of the energy from ATP dissipated as heat represents an incredible inefficiency—specifically related to a crucial cell function of moving materials around. Why would God make such an important cellular function so inefficient?

Such inefficiency reminds me of the discovery a few decades ago that as little as 2–3% of the DNA in human cells codes for genes. Many scientists heralded all this junk DNA as potent evidence of naturalistic evolution. DNA contains the information necessary to produce any particular type of animal or plant (or bacteria or archaea). Mutations in the DNA should produce different functional organisms that natural selection would pare down to the most fit to survive. This process leaves DNA littered with junk mutations that were either neutral or at least not so detrimental that the organism would die off. If evolution were true, then the DNA of organisms should contain a large amount of vestigial DNA from this contingent, historical process.

Given this view of junk DNA, a description of ATP’s inefficiency in a Physics Focus article struck me as odd. According to Philip Ball (emphasis added):

“Biophysicist Takayuki Ariga of Yamaguchi University in Japan and his co-workers recently reported that kinesin seems surprisingly inefficient. In experiments where isolated kinesin molecules moved along microtubules on a glass surface, they found that about 80% of the energy consumed from ATP is dissipated as heat, rather than converted into motion. That result seemed odd to the researchers: one would expect such biomolecules to be adapted by evolution to do their job efficiently.

Why would we expect evolution to generate a vast swath of junk DNA (which requires lots of energy to replicate) but then also expect a protein to move about the cell in an efficient fashion? The expectation of high efficiency seems more appropriate in a view where a creator designed the mechanisms operating in the cell.

As scientists continued to research the operation of Kinesin-1, they recognized that much noisier conditions exist inside the cell than outside on a piece of glass. Given this fact, scientists wanted to know whether this noise affected the energy conversion rate.

The Efficiency of Kinesin-1
To investigate further, they attached small (~500 nanometer) polymer beads to the Kinesis-1 molecule and then used an infrared laser like a set of “optical tweezers” to grab onto the beads.1 By varying the intensity and location of the laser, they could mimic the type of noise experienced by Kinesin-1 inside the cell. Many tests with the laser setup showed a dramatic increase in efficiency of Kinesin-1 movement—specifically, the molecule sped up—under a load. More significantly, the acceleration of Kinesin-1 increased with the size of the load. Additionally, it appears that many other proteins and enzymes in the cell will experience similar efficiency gains when tested under conditions mimicking those inside the cell (although more tests are needed to confirm this).

When taking a quick look at the SR-71 blackbird and seeing it leaking fuel on the runway, you could draw a reasonable conclusion that the engineers had failed to design the aircraft well. However, a closer analysis reveals that the engineers intentionally designed the SR-71 blackbird in a way that would leak fuel on the ground. Flying at the incredible speeds the aircraft can achieve causes the fuel tanks to heat up and expand. If the tanks were sealed on the ground, the extreme heat during flight would make the tanks crack and explode. Stated another way, when the SR-71 fulfills its purpose in flight, all its components behave exactly as designed—even if it looks like failure when sitting on the runway.

In similar fashion, Kinesin-1 acts like a poorly designed molecule in the pristine conditions of the lab. However, when it operates in the noisy environment of the cell, it performs beautifully—just like it was designed to do.

Check out more from Reasons to Believe @Reasons.org

Endnotes

1. Takayuki Ariga et al., “Noise-Induced Acceleration of Single Molecule Kinesin-1,” Physics Review Letters 127, no. 17 (October 22, 2021): 178101, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.178101.

About The Author

Jeff Zweerink

Since my earliest memories, science and the Christian faith have featured prominently in my life - but I struggled when my scientific studies seemed to collide with my early biblical training. My first contact with RTB came when I heard Hugh Ross speak at Iowa State University. It was the first time I realized it was possible to do professional work incorporating both my love of science and my desire to serve God. I knew RTB's ministry was something I was called to be a part of. While many Christians and non-Christians see the two as in perpetual conflict, I find they integrate well. They operate by the same principles and are committed to discovering foundational truths. My passion at RTB is helping Christians see how powerful a tool science is to declare God's glory and helping scientists understand how the established scientific discoveries demonstrate the legitimacy and rationality of the Christian faith. While many Christians and non-Christians see the two as in perpetual conflict, I find they integrate well. • Biography • Resources • Upcoming Events • Promotional Items Jeff Zweerink thought he would follow in his father's footsteps as a chemistry professor until a high school teacher piqued his interest in physics. Jeff pursued a BS in physics and a PhD in astrophysics at Iowa State University (ISU), where he focused his study on gamma rays - messengers from distant black holes and neutron stars. Upon completing his education, Jeff taught at Loras College in Dubuque, Iowa. Postdoctoral research took him to the West Coast, to the University of California, Riverside, and eventually to a research faculty position at UCLA. He has conducted research using STACEE and VERITAS gamma-ray telescopes, and currently works on GAPS, a balloon experiment seeking to detect dark matter. A Christian from childhood, Jeff desired to understand how the worlds of science and Scripture integrate. He struggled when his scientific studies seemed to collide with his early biblical training. While an undergrad at ISU, Jeff heard Hugh Ross speak and learned of Reasons to Believe (RTB) and its ministry of reconciliation - tearing down the presumed barriers between science and faith and introducing people to their personal Creator. Jeff knew this was something he was called to be a part of. Today, as a research scholar at RTB, Jeff speaks at churches, youth groups, universities, and professional groups around the country, encouraging people to consider the truth of Scripture and how it connects with the evidence of science. His involvement with RTB grows from an enthusiasm for helping others bridge the perceived science-faith gap. He seeks to assist others in avoiding the difficulties he experienced. Jeff is author of Who's Afraid of the Multiverse? and coauthor of more than 30 journal articles, as well as numerous conference proceedings. He still serves part-time on the physics and astronomy research faculty at UCLA. He directs RTB's online learning programs, Reasons Institute and Reasons Academy, and also contributes to the ministry's podcasts and daily blog, Today's New Reason to Believe. When he isn’t participating in science-faith apologetics Jeff enjoys fishing, camping, and working on home improvement projects. An enthusiastic sports fan, he coaches his children's teams and challenges his RTB colleagues in fantasy football. He roots for the Kansas City Chiefs and for NASCAR's Ryan Newman and Jeff Gordon. Jeff and his wife, Lisa, live in Southern California with their five children.



Email Sign-up

Sign up for the TWR360 Newsletter

Access updates, news, Biblical teaching and inspirational messages from powerful Christian voices.

Thank you for signing up to receive updates from TWR360.

Required information missing

This site is protected by reCAPTCHA, and the Google Privacy Policy & Terms of Use apply.