For those of us who live in the northern hemisphere, December is a good time to remind everyone about the Sun. It is the month when the Sun spends the fewest hours per day above the horizon. Where I was raised in coastal British Columbia, December was also a month characterized by incessant rain. I remember several Decembers when the Sun never made its appearance in the sky.

The Sun has made a dramatic appearance in one of the December issues of Astrophysical Journal Letters. Three astronomers, Christopher Spalding, Woodward W. Fischer, and Gregory Laughlin, have published a paper in that journal where they propose using Milankovitch cycles to resolve an outstanding problem in our understanding of the Sun.That resolution may yield evidence for the fine-tuning of Earth’s features that make advanced life possible.

I have written about Milankovitch cycles before;2 they are tiny variations in the tilt of Earth’s rotation axis and the shape of Earth’s orbit about the Sun. The solar problem Spalding, Fischer, and Laughlin seek to resolve is known as the faint Sun paradox.

Faint Sun Paradox 
The faint Sun paradox is the conflict between the recognition that life has been present on Earth’s surface for the past 3.8 billion years and the fact that the Sun has brightened by 25–30 percent over the same time period. Scientists know that a decrease of only 1–2 percent in the Sun’s brightness, under current atmospheric conditions, would generate a runaway freezing that would transform Earth into a giant snowball. They also know that a 1–2 percent solar brightening would boil away all Earth’s rivers, lakes, and oceans and cook all life. Thus, scientists have been challenged to ask: How did life originate, survive, and ultimately thrive on Earth through billions of years of ongoing increase in the Sun’s brightness?

In previous blogs3 I wrote about how it takes a combination of adjusting the quantity of greenhouse gases in Earth’s atmosphere, the Sun’s mass, the Earth’s albedo (reflectivity), and the quantity and types of life on Earth’s surface to have any hope of resolving the faint Sun paradox. In chapter 12 of Improbable Planet, I demonstrate how it takes a careful integration—over the past four billion years—of sixteen different compensating factors to resolve the paradox.4

Of the sixteen factors I addressed in Improbable Planet, the two most important are (1) the different kinds and quantities of greenhouse gases in Earth’s atmosphere, and (2) the Sun’s mass throughout the past 3.8-billion-year history of life. I also described how paleoclimatologists now possess a good understanding of the past history of Earth’s greenhouse gases. Astronomers, on the other hand, while knowing that the Sun’s mass at the time of life’s origin must have been larger than it is today (the solar wind results in a steady loss of mass from the Sun), still lack an accurate measure of how much larger it was.

Determining the Sun’s Past Mass
The subject of Spalding, Fischer, and Laughlin’s paper is a method they have developed by which geologists and planetary astronomers can determine, in a straightforward manner, the Sun’s mass at different dates in its history. The trio first point out that even a slight change in the Sun’s mass can make an enormous difference in its brightness. The ongoing fusion of hydrogen into helium in the Sun’s nuclear furnace would cause the Sun to grow brighter by about 25 percent over the past 3.8 billion years, on the assumption that the Sun’s mass had not changed. However, if the Sun was about 5 percent more massive 3.8 billion years ago than it is today, and if the Sun lost mass at a continuous fixed rate throughout the past 3.8 billion years, then the Sun’s brightness would have been constant over that time.

For a number of known reasons that I explain in Improbable Planet,5 the Sun’s mass could not have been as much as 5 percent larger than it is today. There is no need, though, for it to be so large. Paleoclimatology data establishes that the quantities of greenhouse gases in Earth’s atmosphere were much greater than they are today. These additional greenhouse gases would have trapped much more of the Sun’s heat, thereby offsetting the Sun’s lower brightness.

The bulk of the three astronomers’ paper explains an observational proxy they have found to measure the Sun’s past mass at different epochs to a precision of greater than 1 percent. The observational proxy is to use sedimentary rock layers on Earth and on Mars to determine the specific period of oscillation of the variation in the orbital eccentricity for Earth and Mars, respectively (see figure 1).

blog__inline--how-the-suns-mass-affected-earths-history-of-life-1

Figure 1: Variation in Earth’s Orbital Eccentricity. The eccentricity or ellipticity of Earth’s orbit varies cyclically with a period that depends in part on the Sun’s mass. The blue orbital path shows Earth on a more eccentric orbit than the magenta orbital path. Diagram credit: Hugh Ross

Spalding, Fischer, and Laughlin showed that as the Sun’s mass decreases, the period of oscillation in the orbital eccentricity for both Mars and Earth increases. Figure 2 is taken from their paper showing how the period of the eccentricity variation for Earth and Mars increases over the past history of the solar system in the example of the Sun losing 5 percent of its mass over the past 4.5 billion years.

blog__inline--how-the-suns-mass-affected-earths-history-of-life-2

Figure 2: Increase in the Orbital Eccentricity Periodicity for Earth and Mars in the Case of the Sun Losing 5 Percent of Its Mass over the Past 4.5 Billion Years. Diagram credit: Spalding, Fischer, and Laughlin

Banding within laid-down sediments, in particular, shallow water carbonate platforms and banded iron formations, reveal the period in the cycle of Earth’s orbital eccentricity in deposits as old as 2.5 billion years.6 A limitation in measuring the period of Earth’s orbital eccentricity in deposits older than 2.5 billion years is that Earth’s plate tectonics and surface weathering have severely altered the banding in those deposits. This limitation is much less of a factor on Mars. Most of the Martian surface offers a pristine record of past sedimentary deposition that extends back to 4 billion years.

Evidence for Design Now, More to Come
As the team explains, measurements of the banding in ancient sediments on Earth and Mars will provide scientists with an accurate determination of the Sun’s mass throughout the past four billion years. This knowledge will not only show how the faint Sun paradox is resolved but also reveal the specific fine-tuning in the design of most of the sixteen factors I cited in chapter 12 of Improbable Planet. That design makes possible 3.8 billion years of life history on Earth that in turn made human civilization possible. In these exciting times, we can look forward to yet more evidence for the super-intelligent handiwork of the God of the Bible in preparing Earth and its life for the entry of human beings and their launch of global high-technology civilization.

Featured image: Sun rising between San Jacinto Peak (left) and Santa Rosa Mountain (right) in Southern California. Image credit: Hugh Ross

Check out more from Reasons to Believe @Reasons.org

Endnotes
  1. Christopher Spalding, Woodward W. Fischer, and Gregory Laughlin, “An Orbital Window into the Ancient Sun’s Mass,” Astrophysical Journal Letters 869 (December 10, 2018): id. L19, doi:10.3847/2041-8213/aaf219.
  2. Hugh Ross, “Milankovitch Cycle Design,” Today’s New Reason to Believe (blog), Reasons to Believe, August 29, 2011, https://www.reasons.org/explore/blogs/todays-new-reason-to-believe/read/tnrtb/2011/08/29/milankovitch-cycle-design; Hugh Ross, “Exoplanets’ Climate Instabilities Reveal Earth’s Fine-Tuning,” Today’s New Reason to Believe (blog), Reasons to Believe, July 30, 2018, https://www.reasons.org/explore/blogs/todays-new-reason-to-believe/read/todays-new-reason-to-believe/2018/07/30/exoplanets-climate-instabilities-reveal-earth-s-fine-tuning.
  3. Hugh Ross, “Resolving the Faint Sun Paradox,” NRTB e-Zine, Reasons to Believe, June 1, 2010, https://www.reasons.org/explore/publications/nrtb-e-zine/read/nrtb-e-zine/2010/06/01/resolving-the-faint-sun-paradox; Hugh Ross, “Resolving Faint Sun Paradoxes, Part 1,” Today’s New Reason to Believe(blog), Reasons to Believe, July 11, 2011, https://www.reasons.org/explore/blogs/todays-new-reason-to-believe/read/tnrtb/2011/07/11/resolving-faint-sun-paradoxes-part-1Hugh Ross, “Resolving Faint Sun Paradoxes, Part 2,” Today’s New Reason to Believe (blog), Reasons to Believe, July 18, 2011, https://www.reasons.org/explore/blogs/todays-new-reason-to-believe/read/tnrtb/2011/07/18/resolving-faint-sun-paradoxes-part-2; Hugh Ross, “Resolving Faint Sun Paradoxes, Part 3,” Today’s New Reason to Believe (blog), Reasons to Believe, July 25, 2011, https://www.reasons.org/explore/blogs/todays-new-reason-to-believe/read/tnrtb/2011/07/25/resolving-faint-sun-paradoxes-part-3.
  4. Hugh Ross, Improbable Planet: How Earth Became Humanity’s Home (Grand Rapids, MI: Baker, 2016), 143–64.
  5. Ross, Improbable Planet, 152–58.
  6. Axel Hofman, Paul H. G. M. Dirks, and Hielke A. Jelsma, “Shallowing-Upward Carbonate Cycles in the Belingwe Greenstone Belt, Zimbabwe: A Record of Archean Sea-Level Oscillations,” Journal of Sedimentary Research 74 (January 2004): 64–81, doi:10.1306/052903740064; A. F. Trendall et al., “SHRIMP Zircon Ages Constraining the Depositional Chronology of the Hamersley Group, Western Australia,” Australian Journal of Earth Sciences 51 (October 2004): 621–44, doi:10.1111/j.1400-0952.2004.01082.x.

 

About The Author

Dr. Hugh Ross

Reasons to Believe emerged from my passion to research, develop, and proclaim the most powerful new reasons to believe in Christ as Creator, Lord, and Savior and to use those new reasons to reach people for Christ. I also am eager to equip Christians to engage, rather than withdraw from or attack, educated non-Christians. One of the approaches I’ve developed, with the help of my RTB colleagues, is a biblical creation model that is testable, falsifiable, and predictive. I enjoy constructively integrating all 66 books of the Bible with all the science disciplines as a way to discover and apply deeper truths. 1 Peter 3:15–16 sets my ministry goal, "Always be prepared to give an answer to everyone who asks you to give the reason for the hope that you have. But do this with gentleness and respect, keeping a clear conscience." Hugh Ross launched his career at age seven when he went to the library to find out why stars are hot. Physics and astronomy captured his curiosity and never let go. At age seventeen he became the youngest person ever to serve as director of observations for Vancouver's Royal Astronomical Society. With the help of a provincial scholarship and a National Research Council (NRC) of Canada fellowship, he completed his undergraduate degree in physics (University of British Columbia) and graduate degrees in astronomy (University of Toronto). The NRC also sent him to the United States for postdoctoral studies. At Caltech he researched quasi-stellar objects, or "quasars," some of the most distant and ancient objects in the universe. Not all of Hugh's discoveries involved astrophysics. Prompted by curiosity, he studied the world’s religions and "holy books" and found only one book that proved scientifically and historically accurate: the Bible. Hugh started at religious "ground zero" and through scientific and historical reality-testing became convinced that the Bible is truly the Word of God! When he went on to describe for others his journey to faith in Jesus Christ, he was surprised to discover how many people believed or disbelieved without checking the evidence. Hugh's unshakable confidence that God's revelations in Scripture and nature do not, will not, and cannot contradict became his unique message. Wholeheartedly encouraged by family and friends, communicating that message as broadly and clearly as possible became his mission. Thus, in 1986, he founded science-faith think tank Reasons to Believe (RTB). He and his colleagues at RTB keep tabs on the frontiers of research to share with scientists and nonscientists alike the thrilling news of what's being discovered and how it connects with biblical theology. In this realm, he has written many books, including: The Fingerprint of God, The Creator and the Cosmos, Beyond the Cosmos, A Matter of Days, Creation as Science, Why the Universe Is the Way It Is, and More Than a Theory. Between writing books and articles, recording podcasts, and taking interviews, Hugh travels the world challenging students and faculty, churches and professional groups, to consider what they believe and why. He presents a persuasive case for Christianity without applying pressure. Because he treats people's questions and comments with respect, he is in great demand as a speaker and as a talk-radio and television guest. Having grown up amid the splendor of Canada's mountains, wildlife, and waterways, Hugh loves the outdoors. Hiking, trail running, and photography are among his favorite recreational pursuits - in addition to stargazing. Hugh lives in Southern California with his wife, Kathy, and two sons.



Email Sign-up

Sign up for the TWR360 Newsletter

Access updates, news, Biblical teaching and inspirational messages from powerful Christian voices.

Thank you for signing up to receive updates from TWR360.

Required information missing

This site is protected by reCAPTCHA, and the Google Privacy Policy & Terms of Use apply.