Earth has experienced many tectonic plate collisions throughout its history. By far the most dramatic collision began 50 million years ago and continues to this day between Asia and the Indian subcontinent (see figure 1).1 Currently, the Indian subcontinent moves 5 centimeters per year in a northeasterly direction and, so far, has pushed a little more than 2,000 kilometers (1,300 miles) into the Eurasian plate.

As I explain in my book Improbable Planet, this tectonic event established crucial conditions for human civilization and a global population 7 billion strong.2 In particular, the collision caused cooling effects that help counter the Sun’s increasing luminosity and establish an ice age cycle. Today, the Sun is brighter than it has ever been in life’s history. It is so bright that Earth should not have any ice at all. That Earth possesses just the right amount of ice to sustain global civilization is due in large part to the India-Asia slam. I believe this epic tectonic movement supports the idea that God designed Earth specifically for humanity.

blog__inline--fine-tuned-india-asia-collision-1

Figure 1: Indian Subcontinent Movement Away from Africa toward Asia. Credit for images of Africa, Madagascar, and Sri Lanka: NASA;
diagram credit: Hugh Ross

Earth’s Third Pole
After the sea-gap between India and Asia closed 23 million years ago, the ensuing upheaval formed the Himalayas and the Tibetan Plateau (see figure 3). Recent discovery and dating of fossil palm leaves on the Tibetan Plateau establish that its elevation had to be lower than 2,300 meters above sea level 25 million years ago.3 Today, the Tibetan Plateau is slightly larger than 2,500,000 square kilometers (1,000,000 square miles) with an average elevation of 4,600 meters (15,100 feet),4 making it the largest and highest elevation plateau in Earth’s history.

The Tibetan Plateau possesses the planet’s third largest store of ice (after Antarctica and Greenland) and is sometimes referred to as Earth’s third pole. Because temperatures drop an average of 6.5°C per 1,000 meters of elevation (3.5°F per 1,000 feet), the Tibetan Plateau is more than cold enough for permanent glaciers and ice fields to form there. The plateau’s low latitude (26–40°) makes it four times more efficient at reflecting sunlight than ice and snow over Antarctica or northern Greenland (see figure 2).

blog__inline--fine-tuned-india-asia-collision-2

Figure 2: Tibetan Plateau’s Solar Reflectivity Compared to Polar Regions. The more acute angle of reflected sunlight off the Tibetan Plateau compared to the Arctic gives the Tibetan Plateau a much greater global cooling effect. Image credit: NASA; diagram credit: Hugh Ross

Silicate Weathering
The rapid and dramatic uplift caused by the India-Asia collision also greatly enhanced silicate weathering in that region. High precipitation rates from monsoons coming from the north Indian Ocean contributed to the enhancement as well.

Silicates, which are metallic elements chemically bonded to silicon trioxide (SiO3), comprise nearly all of Earth’s landmasses. Liquid water acts as a catalyst to facilitate a chemical reaction that takes carbon dioxide from the atmosphere to transform the silicates into carbonates and sand (SiO2). The steeper and the more rugged the landmasses, such as in the Himalayas and Tibetan Plateau, the greater the silicate surface area exposed to precipitation and, thus, the more carbon dioxide is removed from the atmosphere.

Since carbon dioxide is a greenhouse gas, its removal from the atmosphere contributes to global cooling. And global cooling, in turn, provides the conditions for an ice age cycle. Without the uplift of the Himalayas and the Tibetan Plateau there would be no ice age cycle and, as I explain in Improbable Planet,5 global high-technology civilization would not exist.

Interglacial Lengthening
The India-Asia pileup not only set the stage for an ice age cycle, but it also helped fine-tune the duration of warm interglacial periods. In three previous blog posts (herehere, and here), I explain how a 40-parts-per-million drop in atmospheric carbon dioxide levels played a crucial role in transitioning the warm interglacials from a 2,000–3,000-year duration to a 9,000–12,000-year duration. Scientists’ search for the sources of this level drop revealed several options, but all had a low probability of adding up to the 40-parts-per-million. The enhanced silicate weathering that resulted from the India-Asia tectonic upheaval removed enough carbon dioxide from the atmosphere to easily account for the difference.

blog__inline--fine-tuned-india-asia-collision-3

Figure 3: The Tibetan Plateau as It Exists Today. Image credit: National Geophysical Data Center, NOAA

Fine-Tuned Tectonic Movements
The collision between Asia and the Indian subcontinent was (and is) a violent event. If it were an unguided collision, then we would expect the results to be much like those of a car wreck: ill-timed and catastrophic. Yet the India-Asia collision bears the hallmarks of perfect fine-tuning. It occurred at the right time and right velocity to ensure the formation of the Himalayas and Tibetan Plateau. It also cooled the planet enough to make possible an ice age cycle. Further uplift of the Himalayas and Tibetan Plateau lengthened the duration of the interglacials in the ice age cycle. The combination of the ice age cycle and long duration interglacials made possible our global high-technology civilization and a human population that numbers several billion. I believe this event is best interpreted as God’s supernatural handiwork for the specific benefit of humanity.

Featured image: The Himalayan Mountain Ranges
Image credit: Michel Royon/Wikipedia Commons

Check out more from Reasons to Believe @Reasons.org

Endnotes
  1. About 100 million years ago the Indian subcontinent separated from Madagascar and, 75 million years ago, began racing northward toward Asia at the astoundingly rapid velocity of 20 centimeters (8 inches) per year. Geophysicists consider 4 centimeters per year to be especially rapid.
  2. Hugh Ross, Improbable Planet (Grand Rapids: Baker, 2016), 203–4.
  3. T. Su et al., “No High Tibetan Plateau until the Neogene,” Science Advances 5 (March 6, 2019), id. eaav2189, doi:10.1126/sciadv.aav2189.
  4. Chengshan Wang et al., “Outward-Growth of the Tibetan Plateau during the Cenozoic: A Review,” Tectonophysics 621 (May 7, 2014): 1–43, doi:10.1016/j.tecto.2014.01.036; Joel E. Saylor et al., “Topographic Growth of the Jishi Shan and Its Impact on Basin and Hydrology Evolution, NE Tibetan Plateau,” Basin Research 30, no. 3 (June 2018): 544–63, doi:10.1111/bre.12264; Xiao-Dian Jiang and Zheng-Xiang Li, “Seismic Reflection Data Support Episodic and Simultaneous Growth of the Tibetan Plateau Since 25 Myr,” Nature Communications 5 (November 2014): id. 5453, doi:10.1038/ncomms6453.
  5. Ross, Improbable Planet, 209–212.

 

About The Author

Dr. Hugh Ross

Reasons to Believe emerged from my passion to research, develop, and proclaim the most powerful new reasons to believe in Christ as Creator, Lord, and Savior and to use those new reasons to reach people for Christ. I also am eager to equip Christians to engage, rather than withdraw from or attack, educated non-Christians. One of the approaches I’ve developed, with the help of my RTB colleagues, is a biblical creation model that is testable, falsifiable, and predictive. I enjoy constructively integrating all 66 books of the Bible with all the science disciplines as a way to discover and apply deeper truths. 1 Peter 3:15–16 sets my ministry goal, "Always be prepared to give an answer to everyone who asks you to give the reason for the hope that you have. But do this with gentleness and respect, keeping a clear conscience." Hugh Ross launched his career at age seven when he went to the library to find out why stars are hot. Physics and astronomy captured his curiosity and never let go. At age seventeen he became the youngest person ever to serve as director of observations for Vancouver's Royal Astronomical Society. With the help of a provincial scholarship and a National Research Council (NRC) of Canada fellowship, he completed his undergraduate degree in physics (University of British Columbia) and graduate degrees in astronomy (University of Toronto). The NRC also sent him to the United States for postdoctoral studies. At Caltech he researched quasi-stellar objects, or "quasars," some of the most distant and ancient objects in the universe. Not all of Hugh's discoveries involved astrophysics. Prompted by curiosity, he studied the world’s religions and "holy books" and found only one book that proved scientifically and historically accurate: the Bible. Hugh started at religious "ground zero" and through scientific and historical reality-testing became convinced that the Bible is truly the Word of God! When he went on to describe for others his journey to faith in Jesus Christ, he was surprised to discover how many people believed or disbelieved without checking the evidence. Hugh's unshakable confidence that God's revelations in Scripture and nature do not, will not, and cannot contradict became his unique message. Wholeheartedly encouraged by family and friends, communicating that message as broadly and clearly as possible became his mission. Thus, in 1986, he founded science-faith think tank Reasons to Believe (RTB). He and his colleagues at RTB keep tabs on the frontiers of research to share with scientists and nonscientists alike the thrilling news of what's being discovered and how it connects with biblical theology. In this realm, he has written many books, including: The Fingerprint of God, The Creator and the Cosmos, Beyond the Cosmos, A Matter of Days, Creation as Science, Why the Universe Is the Way It Is, and More Than a Theory. Between writing books and articles, recording podcasts, and taking interviews, Hugh travels the world challenging students and faculty, churches and professional groups, to consider what they believe and why. He presents a persuasive case for Christianity without applying pressure. Because he treats people's questions and comments with respect, he is in great demand as a speaker and as a talk-radio and television guest. Having grown up amid the splendor of Canada's mountains, wildlife, and waterways, Hugh loves the outdoors. Hiking, trail running, and photography are among his favorite recreational pursuits - in addition to stargazing. Hugh lives in Southern California with his wife, Kathy, and two sons.



Email Sign-up

Sign up for the TWR360 Newsletter

Access updates, news, Biblical teaching and inspirational messages from powerful Christian voices.

Thank you for signing up to receive updates from TWR360.

Required information missing

This site is protected by reCAPTCHA, and the Google Privacy Policy & Terms of Use apply.