My wife is very sensitive to cold spots in our home. So is our cat. Both can sense tiny temperature differences among the rooms in our home and determine which room is the coldest. Based on that sensitivity, they will do everything they can to avoid spending time in our home’s cold spot.

Cosmic Cold Spot
Many astronomers believe that the universe has an anomalous cold spot. The highest quality maps of the radiation left over from the cosmic creation eventknown as the cosmic microwave background radiation (CMBR)reveal a small region, about 5° across, that is 0.000070 Kelvin colder than the average temperature of the CMBR (see figure 1). The remainder of the CMBR map manifests average temperature variations of just 0.000018 Kelvin.

This cosmic cold spot, though small, is about five times larger than other CMBR temperature fluctuations. It also departs from the mean CMBR temperature by nearly four times as much as the average of other cold spots. This explains why most astronomers believe this particular cold spot is a true anomaly in the CMBR rather than just a statistical fluke.1 The possible validity of this cosmic cold spot has caused some astronomers to call into question certain aspects of the ΛCDM (lambda cold dark matter) big bang creation model, which is most consistent with the Bible’s creation account.2

blog__inline--does-a-cosmic-cold-spot-challenge-creation-1
Figure 1: Location of CMBR Cold Spot. The colors indicate temperature differences. Red spots indicate the warmest regions and deep blue the coolest regions. The black circle shows the cold spot’s location in the South Celestial Hemisphere in the general direction of the constellation Eridanus. Credit: Planck Collaboration/ESA.

Explanations for the Cosmic Cold Spot
On the assumption that the cosmic cold spot is not just a statistical fluke, astronomers have, over the past seven years, probed for possible physical causes. The cause that has received the most intense observational and theoretical study is that of one or more underdense regions that align with the cosmic cold spot.

blog__inline--does-a-cosmic-cold-spot-challenge-creation-2
Figure 2: 2018 Planck Satellite Map of the Cosmic Microwave Background Radiation Credit: Planck Collaboration/ESA

Astronomers refer to underdense regions in the universe as cosmic voids. I discussed cosmic voids as significant features in the cosmic webs in my March 9, 2020 blog.3 Cosmic voids are bubbles in the universe measuring from 30–400 million light-years across. They contain less than a tenth the density of matter that is typical for the rest of the universe. Supervoids measure from 400 million to more than a billion light-years across.

In 2017, a team of six astronomers led by University of Lyon’s Hélène Courtois used the Cosmicflows-3 catalog of peculiar velocities of galaxies to produce a three-dimensional map showing the gravitational velocity fields of the local universe.4

blog__inline--does-a-cosmic-cold-spot-challenge-creation-3
Figure 3: The Gravitational Potential Fields and Flows of the Local Universe Credit: Cosmicflows-3/Hélène Courtois et al., Astrophysical Journal Letters.

In figure 3, the nexus of three orthogonal lines toward the upper center shows the location of our Milky Way Galaxy. The blue region toward the left shows the location of the Shapley Supercluster of galaxies, the largest and most dense concentration of galaxies in the local universe. The gray regions to the right and upper center show the two most significant voids in the local universe.

Our galaxy lies on a line joining the Shapley Supercluster to the void in the upper center of figure 3. The high mass concentration in the Shapley Supercluster gravitationally pulls our galaxy toward it. The low mass concentration in the upper center void gravitationally repels our galaxy away from it. The combination of the pulling and the repelling explains the dipole feature in the CMBR (see figure 4).

blog__inline--does-a-cosmic-cold-spot-challenge-creation-4
Figure 4: Cosmic Microwave Background Dipole The cooler regions of the CMBR are shown in blue while the warmer regions are shown in orange. The arrow indicates the direction of the movement of our galaxy relative to the CMBR. In Figures 1 and 2 this dipole effect has been removed. Credit: DMR/COBE/NASA/Four-Year Sky Map

The huge void to the right in figure 3 aligns with the cosmic cold spot in figure 1. Hence, Courtois’ team concluded that it likely plays a substantial role in explaining the cosmic cold spot. They labeled this void the Cold-Spot Repeller.5

Voids and supervoids produce cold spots in the CMBR through an effect first proposed in 1967 by Rainer Sachs and Arthur Wolfe.6 In an expanding universe, CMBR photons (electromagnetic radiation particles) lose more energy when entering a void than they do when leaving the now larger void. This energy loss chills the photons.

In 2015, astronomers led by István Szapudi discovered the supervoid with a diameter measuring 1 billion light-years, which aligns with the cosmic cold spot.7 The Cold-Spot Repeller appears to be consistent with this supervoid. Szapudi’s team calculated that the integrated Sachs-Wolfe effect of this supervoid would cool the cosmic cold spot region by 0.000020 Kelvin.8 It could cool it by another 0.000020–0.000030 Kelvin if the supervoid they discovered were to prove to be slightly larger than their measurements indicated.9

In 2017, astronomers led by Ruari Mackenzie used the 2dF-VST ATLAS Cold Spot Redshift Survey and found, in the direction of the cosmic cold spot, three voids out to a distance of three billion light-years and a possible fourth void beyond that.10 They determined that the four voids combined would yield an integrated Sachs-Wolfe cooling effect no greater than 0.000031 Kelvin. Since this degree of cooling fell short of explaining the cosmic cold spot’s temperature, Mackenzie’s team suggested that a random quantum fluctuation in the universe’s primordial density distribution gave birth to the cosmic cold spot. However, there is only a 1 in 50 chance that such a fluctuation could explain the entirety of the cosmic cold spot’s colder temperature.

Yet another explanation for the cosmic cold spot was proposed just this year by astronomers led by Qi Guo.11 The team reported the discovery of 19 dwarf galaxies that are dominated by ordinary matter (matter comprised of protons, neutrons, and electrons) and deficient in dark matter (matter comprised of particles that interact with photons very weakly or not at all). Their discovery was unexpected since dwarf galaxies are known to be dominated by dark matter. Because 14 of the dwarf galaxies are isolated from larger galaxies, it is not possible that their dark matter was stripped away from them by the gravitational pull of an adjacent galaxy. The presence of a substantial number of dark-matter-deficient dwarf galaxies in voids and supervoids may enhance their integrated Sachs-Wolfe cooling.

The Planck 2018 updates in the CMBR temperature and polarization maps challenged the statistical significance of the cosmic cold spot. While the cosmic cold spot was clearly seen in the CMBR temperature map, it was barely visible in the CMBR polarization map (see figure 5).

blog__inline--does-a-cosmic-cold-spot-challenge-creation-5
Figure 5: Planck 2018 CMBR Polarization Map Credit: Planck Collaboration/ESA.

Cosmic Cold Spot Cause and Its Implications
Of the five possible explanations for the cosmic cold spot described above, not one appears sufficient on its own. It seems likely, however, that at least three must make a substantial contribution.

The integrated Sachs-Wolfe effect from one or more of the four or five voids in the direction of the cosmic cold spot likely explains at least a third of the observed cooling. Dark-matter-deficient dwarf galaxies could explain up to another third. A random quantum fluctuation in the universe’s primordial density distribution could explain some, if not most, of the cooling. The originally proposed explanation that the observed cooling is not real but is actually a statistical artifact could explain some of it; but it is unlikely to explain all the apparently observed cooling. That such a statistical artifact likely explains some of the apparent cooling appears borne out in the Planck 2018 CMBR polarization map.

The bottom line is that the seven-year search for explanations for the observed cosmic cold spot in no way calls into question the validity of the ΛCDM cosmic creation model. Astronomers’ latest observations sustain what the Bible taught about the origin, attributes, and history of the universe thousands of years ago.

Check out more from Reasons to Believe @Reasons.org

Endnotes
  1. F. Finelli et al., “Supervoids in the WISE–2MASS Catalogue Imprinting Cold Spots in the Cosmic Microwave Background,” Monthly Notices of the Royal Astronomical Society 455, no. 2 (January 11, 2016): 1247, doi:10.1093/mnras/stv2388.
  2. Hugh Ross and John Rea, “Big Bang—the Bible Taught It First!” Facts for Faith, Quarter 3 (July 1, 2000): 26–32, https://www.reasons.org/explore/publications/facts-for-faith/read/facts-for-faith/2000/07/01/big-bang-the-bible-taught-it-first!
  3. Hugh Ross, “The End of Cosmic Greatness and the Beginning of Life,” Today’s New Reason to Believe (blog), March 9, 2020, https://www.reasons.org/explore/blogs/todays-new-reason-to-believe/read/todays-new-reason-to-believe/2020/03/09/the-end-of-cosmic-greatness-and-the-beginning-of-life.
  4. Hélène M. Courtois et al., “Cosmicflows-3: Cold Spot Repeller?” Astrophysical Journal Letters 847 (September 20, 2017): id. L6, doi:10.3847/2041-8213/aa88b2.
  5. Courtois et al., 2.
  6. R. K. Sachs and A. M. Wolfe, “Perturbations of a Cosmological Model and Angular Variations of the Microwave Background,” Astrophysical Journal 147 (January 1967): 73–90, doi:10.1086/148982.
  7. István Szapudi et al., “Detection of a Supervoid Aligned with the Cold Spot of the Cosmic Microwave Background,” Monthly Notices of the Royal Astronomical Society 450, no. 1 (June 2015): 288–94, doi:10.1093/mnras/stv488.
  8. Szapudi et al., 293.
  9. Szapudi et al., 293.
  10. Ruari Mackenzie et al., “Evidence Against a Supervoid Causing the CMB Cold Spot,” Monthly Notices of the Royal Astronomical Society 470, no. 2 (September 2017): 2328–38, doi:10.1093/mnras/stx931.
  11. Qi Guo et al., “Further Evidence for a Population of Dark-Matter-Deficient Dwarf Galaxies,” Nature Astronomy 4 (March 2020): 246–51, doi:10.1038/s41550-019-0930-9.

 

About The Author

Dr. Hugh Ross

Reasons to Believe emerged from my passion to research, develop, and proclaim the most powerful new reasons to believe in Christ as Creator, Lord, and Savior and to use those new reasons to reach people for Christ. I also am eager to equip Christians to engage, rather than withdraw from or attack, educated non-Christians. One of the approaches I’ve developed, with the help of my RTB colleagues, is a biblical creation model that is testable, falsifiable, and predictive. I enjoy constructively integrating all 66 books of the Bible with all the science disciplines as a way to discover and apply deeper truths. 1 Peter 3:15–16 sets my ministry goal, "Always be prepared to give an answer to everyone who asks you to give the reason for the hope that you have. But do this with gentleness and respect, keeping a clear conscience." Hugh Ross launched his career at age seven when he went to the library to find out why stars are hot. Physics and astronomy captured his curiosity and never let go. At age seventeen he became the youngest person ever to serve as director of observations for Vancouver's Royal Astronomical Society. With the help of a provincial scholarship and a National Research Council (NRC) of Canada fellowship, he completed his undergraduate degree in physics (University of British Columbia) and graduate degrees in astronomy (University of Toronto). The NRC also sent him to the United States for postdoctoral studies. At Caltech he researched quasi-stellar objects, or "quasars," some of the most distant and ancient objects in the universe. Not all of Hugh's discoveries involved astrophysics. Prompted by curiosity, he studied the world’s religions and "holy books" and found only one book that proved scientifically and historically accurate: the Bible. Hugh started at religious "ground zero" and through scientific and historical reality-testing became convinced that the Bible is truly the Word of God! When he went on to describe for others his journey to faith in Jesus Christ, he was surprised to discover how many people believed or disbelieved without checking the evidence. Hugh's unshakable confidence that God's revelations in Scripture and nature do not, will not, and cannot contradict became his unique message. Wholeheartedly encouraged by family and friends, communicating that message as broadly and clearly as possible became his mission. Thus, in 1986, he founded science-faith think tank Reasons to Believe (RTB). He and his colleagues at RTB keep tabs on the frontiers of research to share with scientists and nonscientists alike the thrilling news of what's being discovered and how it connects with biblical theology. In this realm, he has written many books, including: The Fingerprint of God, The Creator and the Cosmos, Beyond the Cosmos, A Matter of Days, Creation as Science, Why the Universe Is the Way It Is, and More Than a Theory. Between writing books and articles, recording podcasts, and taking interviews, Hugh travels the world challenging students and faculty, churches and professional groups, to consider what they believe and why. He presents a persuasive case for Christianity without applying pressure. Because he treats people's questions and comments with respect, he is in great demand as a speaker and as a talk-radio and television guest. Having grown up amid the splendor of Canada's mountains, wildlife, and waterways, Hugh loves the outdoors. Hiking, trail running, and photography are among his favorite recreational pursuits - in addition to stargazing. Hugh lives in Southern California with his wife, Kathy, and two sons.



Email Sign-up

Sign up for the TWR360 Newsletter

Access updates, news, Biblical teaching and inspirational messages from powerful Christian voices.

Thank you for signing up to receive updates from TWR360.

Required information missing

This site is protected by reCAPTCHA, and the Google Privacy Policy & Terms of Use apply.