One of my hobbies is nature photography. Due to my fitness and mountaineering skills, I am able to take photos that most other photographers are unable to capture. I love posting some of my better photos on my Facebook page.

On a recent mountain hiking adventure trip I discovered that my advantage no longer exists. I was about to set off on a challenging climb to a pinnacle where I anticipated I could take some beautiful photos. A man less than a hundred feet away beat me to it without taking a single step. He sent his drone to the site, four miles away, and it came back with photos that put mine to shame. His camera-drone system, though, cost about sixty times more than my camera and weighed nearly sixty times as much as mine, making it barely portable. Is it possible to overcome these limitations by designing and building much tinier, fully capable drones?

Tiny Drone Quest
Drones are an amazing technological wonder. However, they are either expensive and bulky or not very capable. Therefore, scientists and engineers have embarked on a quest to manufacture progressively tinier, more capable drones. Their ultimate goal is to make flying robots that are just as small and capable as small flying insects.

Drones the size of small flies would have important applications. They could be sent en masse to inspect and diagnose hazardous sites. They could fly through piles of rubble to find and determine the condition of victims trapped by the damage resulting from earthquakes, tornadoes, hurricanes, and floods. They could be released from spacecraft to assist in space exploration. They could repel and even destroy disease-carrying biting insects.

However, scientists have encountered huge technological barriers to making flying robots the size of flies. The most challenging problems are how to stabilize the flight and duplicate the hovering capabilities of insects. In drones and aircraft these barriers are overcome through the installation of gyroscopes. But there is a limit to how small one can make a gyroscope. There is also the problem of providing sufficient energy for meaningful flight. Batteries have been either too heavy or lacked the required energy. Until recently, the smallest available high-drain batteries weighed in at 350 milligrams.

Three research breakthroughs in robotics have helped overcome the barriers. By carefully studying the flight designs in insects, a research team led by Kevin Ma developed the equivalent of flight muscles through the use of miniaturized high-power density piezoelectric devices.1 They used a lightweight wire to transfer energy from a battery on the ground to the flapping-wing flying robot. Their robot, though tethered, achieved stable unconstrained hovering and basic flight maneuvers. Ma and his colleagues were able to manufacture such a robot with a mass of only 80 milligrams. For comparison, the average weight of a worker honeybee is about 160 milligrams.

In a second effort in 2018, a team led by Johannes James built an untethered flying robot that weighed only 190 milligrams.2 To get the robot down to this weight, James’s team used a hyperminiaturized gyroscope that was developed by studying the designs in the biological gyroscope possessed by bees. The gyroscope weighed only 15 milligrams. They also designed and built an external laser device to beam power to the robot.

Third, at the end of 2022, a team led by Sawyer Fuller published their achievement of the manufacture and test flights of the first gnat-sized flying robot.3 Their robot weighed only 10 milligrams. For comparison, gnats weigh from 1 to 10 milligrams and the average weight of an adult fruit fly is 10 milligrams.

Fuller’s team carefully examined the anatomical designs of the fruit fly. They discovered that the fruit fly lacks the equivalent of a gyroscope. Instead, tiny feathers on its antennae are designed to detect wind speed and direction. Fuller’s team discovered that their robot can do what fruit flies do by using miniaturized accelerometers. The accelerometers they installed on their robot could quickly measure the acceleration of the robot induced by wind, dust, rain, and/or snow. A micro-computer processor on the robot then calculated the adjustments needed in the robot’s flapping wings to compensate for the induced accelerations. The robot can be powered either by an external laser beam like the one developed by James’s team or by the very recently developed hyperminiaturized battery.

Physical and Philosophical Applications
Of the practical applications described earlier in this article, the one that most excites scientists about gnat- and bee-sized flying robots is their use for space exploration. Flying robots this tiny would exponentially reduce the cost of determining the characteristics of our solar system’s planets, moons, asteroids, and comets. A small, inexpensive spacecraft could be sent to orbit a solar system body. That spacecraft could then release—with very little energy expenditure—a small swarm of tiny flying robots to measure a wide range of the body’s physical and chemical characteristics.

For interstellar exploration, tiny flying robots are a must. The largest possible spacecraft that could survive—without crippling damage—a trip to the nearest stars at 10–20% light’s velocity is one no larger than about 10 centimeters across. Such a small spacecraft could encapsulate several hundred gnat-sized flying robots that could be released to determine the detailed characteristics of the nearest stars and their planets and asteroid/comet belts.

Arguably the greatest significance of the three research teams’ achievements is philosophical. Their breakthroughs critically depended upon, as best as humanly possible, copying the amazing designs in the biological machinery of bees, fruit flies, and gnats.

Genesis 1:26–27 declares that God created humans in his image. Part of the image of God we possess is the ability to invent and create. God has given us the capacity to design and manufacture an enormous variety of tools, devices, and machines. However, the tools, devices, and machines that God builds are far superior to the ones we make. As the teams headed by Ma, James, and Fuller learned, humans have much to gain by studying our Creator’s designs and implementing them into the devices and machines we desire to make for humanity’s benefit.

Check out more from Reasons to Believe @Reasons.org

Endnotes

  1. Kevin Y. Ma et al., “Controlled Flight of a Biologically Inspired, Insect-Scale Robot,” Science 340, no. 6132 (May 3, 2013): 603–607, doi:10.1126/science.1231806.
  2. Johannes James et al., “Liftoff of a 190 mg Laser-Powered Aerial Vehicle: The Lightest Wireless Robot to Fly,” 2018 IEEE International Conference on Robotics and Automation (May 2018): 1–8, doi:10.1109/ICRA.2018.8460582.
  3. Sawyer Fuller, Zhitao Yu, and Yash P. Talwekar, “A Gyroscope-Free Visual-Inertial Flight Control and Wind Sensing System for 10-mg Robots,” Science Robotics 7, no. 72 (November 23, 2022): id. abq8184, doi:10.1126/scirobotics.abq8184.

About The Author

Dr. Hugh Ross

Reasons to Believe emerged from my passion to research, develop, and proclaim the most powerful new reasons to believe in Christ as Creator, Lord, and Savior and to use those new reasons to reach people for Christ. I also am eager to equip Christians to engage, rather than withdraw from or attack, educated non-Christians. One of the approaches I’ve developed, with the help of my RTB colleagues, is a biblical creation model that is testable, falsifiable, and predictive. I enjoy constructively integrating all 66 books of the Bible with all the science disciplines as a way to discover and apply deeper truths. 1 Peter 3:15–16 sets my ministry goal, "Always be prepared to give an answer to everyone who asks you to give the reason for the hope that you have. But do this with gentleness and respect, keeping a clear conscience." Hugh Ross launched his career at age seven when he went to the library to find out why stars are hot. Physics and astronomy captured his curiosity and never let go. At age seventeen he became the youngest person ever to serve as director of observations for Vancouver's Royal Astronomical Society. With the help of a provincial scholarship and a National Research Council (NRC) of Canada fellowship, he completed his undergraduate degree in physics (University of British Columbia) and graduate degrees in astronomy (University of Toronto). The NRC also sent him to the United States for postdoctoral studies. At Caltech he researched quasi-stellar objects, or "quasars," some of the most distant and ancient objects in the universe. Not all of Hugh's discoveries involved astrophysics. Prompted by curiosity, he studied the world’s religions and "holy books" and found only one book that proved scientifically and historically accurate: the Bible. Hugh started at religious "ground zero" and through scientific and historical reality-testing became convinced that the Bible is truly the Word of God! When he went on to describe for others his journey to faith in Jesus Christ, he was surprised to discover how many people believed or disbelieved without checking the evidence. Hugh's unshakable confidence that God's revelations in Scripture and nature do not, will not, and cannot contradict became his unique message. Wholeheartedly encouraged by family and friends, communicating that message as broadly and clearly as possible became his mission. Thus, in 1986, he founded science-faith think tank Reasons to Believe (RTB). He and his colleagues at RTB keep tabs on the frontiers of research to share with scientists and nonscientists alike the thrilling news of what's being discovered and how it connects with biblical theology. In this realm, he has written many books, including: The Fingerprint of God, The Creator and the Cosmos, Beyond the Cosmos, A Matter of Days, Creation as Science, Why the Universe Is the Way It Is, and More Than a Theory. Between writing books and articles, recording podcasts, and taking interviews, Hugh travels the world challenging students and faculty, churches and professional groups, to consider what they believe and why. He presents a persuasive case for Christianity without applying pressure. Because he treats people's questions and comments with respect, he is in great demand as a speaker and as a talk-radio and television guest. Having grown up amid the splendor of Canada's mountains, wildlife, and waterways, Hugh loves the outdoors. Hiking, trail running, and photography are among his favorite recreational pursuits - in addition to stargazing. Hugh lives in Southern California with his wife, Kathy, and two sons.



Email Sign-up

Sign up for the TWR360 Newsletter

Access updates, news, Biblical teaching and inspirational messages from powerful Christian voices.

Thank you for signing up to receive updates from TWR360.

Required information missing

This site is protected by reCAPTCHA, and the Google Privacy Policy & Terms of Use apply.