Researchers from Germany made headlines by announcing that they are one step closer to identifying LUCA (the last universal common ancestor)—the single-celled organism that anchors the evolutionary tree of life.1

Because an organism’s genes reflect its environment, these researchers attempted to partially reconstruct LUCA’s genome. They reasoned that this reconstruction would tell them something about LUCA’s complexity and lifestyle.2 To accomplish this task, the researchers searched 6.1 million protein-coding genes found in archaeal and bacterial genomes for those with a special type of history (that is, they searched for universal, monophyletic genes).

They identified 355 types of genes that fit their criteria. A few of the genes appear to be involved with essential biochemical operations such as DNA replication, transcription, and translation. On the other hand, most of the 355 genes play highly specialized roles that reflect a thermophilic lifestyle. For example, they discovered an enzyme called reverse gyrase that is only found among microbes that live in high-temperature environments. They also discovered enzymes that are part of a metabolic route called the Wood-Ljungdahl pathway. This pathway uses molecular hydrogen as an electron donor, and carbon dioxide as an electron acceptor. The hydrogen had to come from a geological source. On this basis, the German scientists concluded that LUCA lived in a hydrothermal vent environment, providing a ready source for this life-giving gas.

The researchers also discovered that this microbe was able to: 1) fix nitrogen from the environment, incorporating this atom into it’s biomolecules; 2) lived in an anaerobic environment (devoid of oxygen); but 3) didn’t seem to have the ability to make amino acids. The investigators think that LUCA, though primitive, may have had more than 355 genes. If the investigators relax their search requirements a bit, they estimate that LUCA may have had nearly 575 genes.

The German research team argued that not only was LUCA a thermophile, but that the origin of life occurred at hydrothermal vents.

Have these researchers provided us with a key insight into LUCA’s identity? Have they identified the locale for the origin of life?

Not necessarily. Here are some points to consider:

In other words, there are good scientific reasons to question the high-temperature origin of life and the thermophilic identity of LUCA. And given the apparent complexity of LUCA, there is a strong basis to question evolutionary scenarios for life’s start.

In spite of the headlines, scientists have no true understanding of how chemical evolution could have produced the first life on Earth.

Resources
Too Hot to Handle” by Fazale Rana (Article)
Some Like It Hot—First Life Did Not” by Fazale Rana (Article)
Sea Vents Closed as Life-Origin Site” by Fazale Rana (Article)
Biochemists Ask, ‘How Low Can Life Go?’” by Fazale Rana (Article)
Origins of Life by Fazale Rana and Hugh Ross (Book)
Creating Life in the Lab by Fazale Rana (Book)

Endnotes

  1. Madeline C. Weiss et al., “The Physiology and Habitat of the Last Universal Common Ancestor,” Nature Microbiology 1 (July 2016): 16116, doi:10.1038/NMICROBIOL.2016.116; James O. McInerney, “Evolution: A Four Billion Year Old Metabolism,” Nature Microbiology 1 (July 2016): 16139, doi:10.1038/NMICROBIOL.2016.139.
  2. Scientists think that LUCA was a prokaryotic, single-celled microbe.

 

Subjects: Bacteria, Cells, Origin of Life

Check out more from Reasons to Believe @Reasons.org

About The Author

Dr. Fazale Rana

I watched helplessly as my father died a Muslim. Though he and I would argue about my conversion, I was unable to convince him of the truth of the Christian faith. I became a Christian as a graduate student studying biochemistry. The cell's complexity, elegance, and sophistication coupled with the inadequacy of evolutionary scenarios to account for life's origin compelled me to conclude that life must stem from a Creator. Reading through the Sermon on the Mount convinced me that Jesus was who Christians claimed Him to be: Lord and Savior. Still, evangelism wasn't important to me - until my father died. His death helped me appreciate how vital evangelism is. It was at that point I dedicated myself to Christian apologetics and the use of science as a tool to build bridges with nonbelievers. In 1999, I left my position in R&D at a Fortune 500 company to join Reasons to Believe because I felt the most important thing I could do as a scientist is to communicate to skeptics and believers alike the powerful scientific evidence - evidence that is being uncovered day after day - for God's existence and the reliability of Scripture. [...] I dedicated myself to Christian apologetics and the use of science as a tool to build bridges with nonbelievers. Fazale "Fuz" Rana discovered the fascinating world of cells while taking chemistry and biology courses for the premed program at West Virginia State College (now University). As a presidential scholar there, he earned an undergraduate degree in chemistry with highest honors. He completed a PhD in chemistry with an emphasis in biochemistry at Ohio University, where he twice won the Donald Clippinger Research Award. Postdoctoral studies took him to the Universities of Virginia and Georgia. Fuz then worked seven years as a senior scientist in product development for Procter & Gamble.



Email Sign-up

Sign up for the TWR360 Newsletter

Access updates, news, Biblical teaching and inspirational messages from powerful Christian voices.

Thank you for signing up to receive updates from TWR360.

Required information missing

This site is protected by reCAPTCHA, and the Google Privacy Policy & Terms of Use apply.